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1 Introduction

We are concerned with the oscillatory properties of all solutions of third order nonlinear difference
equations of the form

2
1( ) 0; 0,1, 2,...n

n n n n n n n
n

q x c x p x q f x n
a

               (1.1)

2
1( ) ( ) 0; 0,1,2,...n

n n n n n n n n
n

q x x c x p x q f x n
a

               (1.2)
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1( ) 0; 0,1,2,...n

n n n n n
n

q x c x q f x n
a

               (1.3)

2
1( ) ( ) 0; 0,1,2,...n

n n n n n n n n
n

q x x c x p x q f x n
a

               (1.4)

Where the following conditions are assumed to hold.

(H1) { },{ },{ }n n na p q  and { }nc  are real positive sequence and 0nq  for infinitely many values of n .

(H2) :f R R  is continues and ( ) 0xf x  for all 0x .

(H3) there exists a real valued function g such that

( ) ( ) ( , )[( ) ( )],n n n n n n n n n nf u f v g u v u c u v c v for all 0, 0, 0, 0n nu v c n and
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( , ) 0 .n ng u v L R

(H4) : R R  is continues for all 0, ( ) 0nx x .

(H5) 2( 1) .n
n M

n p

(H6)
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n n

q
a

(H7)
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n
n q
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0
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n n
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nq

By a solution of equation (1.1) –(1.4), we mean a real sequence { }nx  satisfying (1.1)-(1.4) for

0,1,2,...n .A solution { }nx  is said to be oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, it is called non-oscillatory. The forward difference operator  is defined by

1n n nx x x

In recent years, much research is going in the study of oscillatory behavior of solutions of third
order difference equations. For more details on oscillatory behavior of difference equations, one may
refer [1-22].

2   Main Results

In this section, we present some sufficient condition for the oscillation of all the solutions of
(1.1)-(1.4). We begin with the following lemma.

Lemma 1

Let ( , , )P n s x  be defined on , {0,1, 2,...}, [0, )N N R N R such that for fixed n and

s , the function ( , , )P n s x  is non-decreasing in x .Let { }nr  be a given sequence and the sequences

{ }nx  and { }nz be defined on N  satisfying , for all ,n N

1

0
( , , ),

n

n n s
s

x r P n s x                                                                      (2.1)
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And
1

0
( , , ),

n

n n s
s

z r P n s z                                                                      (2.2)

respectively.  Then n nz x  for all .n N

This proof can be found in [18].

Theorem 1

In addition to (H1), (H2) and (H3).assume that (H5), (H6), (H7) and (H8) hold and let

.n n n nz x c x  Then, every solution of (1.1) is oscillatory.

Proof:

Suppose the contrary. Then we may assume that { }nx be a non oscillatory solution of (1.1),

such that 0( 0)n nx orx  for all 1, 0n M M  is an integer and let n
n

n

qb
a

.

Equation (1.1) implies

1 1 1( ) 0n n n n n n n nb z b z p x q f x                                                  (2.3)

Multiplying (2.3) by
1

1
( )n

n
f x

 and summing from M  to ( 1)n , we obtain

1 1 1 1

1 1
1 1 1

1 1 1 ( 1) 0.
( ) ( ) ( )

n n n n

s s s s s s s
s M s M s M s Ms s s

s s sb z b z p x s q
f x f x f x

        (2.4)

But

1 1 1
2 2, 1 1 21 1 2 21 1

1 1
1 1 1 2 1 2

( 1) ( )( 1) ( 1)1
( ) ( ) ( ) ( ) ( ) ( )

n n n
s s s s sn n s sM M

s s
s M s M s Ms n M s s s

s b g x x z zn b x b zM b xs b z
f x f x f x f x f x f x

   (2.5)

Also,

21 1 1
1 2, 1 11 1

1 1 1 2 1 2

( 1) ( )( )( 1) ( 1)1
( ) ( ) ( ) ( ) ( ) ( )

n n n
s s s sn n s sM M

s s
s M s M s Ms n M s s s

s b g x x zn b x b zM b xs b z
f x f x f x f x f x f x

   (2.6)

Substituting (2.5) and (2.6) in (2.4), we have
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21
1 1 2 2 1 1 2 1 2 1 1

1 1 1 2 1 2

( 1) ( 1) ( 1) ( , ) ( 1) ( , )( )
( ) ( ) ( ) ( ) ( ) ( )

n
n n n n s s s s s s s s s

s Mn n s s s s

n b z n b z s b g x x z z s b g x x z
f x f x f x f x f x f x

1 1 1
2 2 1 1 1 1

2 2 1 1 1

( 1) ( 1)1 ( 1)
( ) ( ) ( ) ( ) ( )

n n n
s s s s M M M M

s s s
s M s M s Ms s s M M

b z b z M b z M b zs p x s q
f x f x f x f x f x

      (2.7)

Using Schwarz’s inequality, we have

11 2 21 1 12
22 2 2

2
2 2

( )
( ) ( )

n n n
s s s

s
s M s M s Ms s

b z zb
f x f x

                                              (2.8)

11 2 21 1 12
21 1 1

1
2 2

( )
( ) ( )

n n n
s s s

s
s M s M s Ms s

b z zb
f x f x

                                                 (2.9)

1
1 2 21 1 12

22 2 1 1 2 2 1 1 2
2

1 2 1 2

( 1) ( , ) ( 1) ( , )( )
( ) ( ) ( ) ( )

n n n
s s s s s s s s s

s
s M s M s Ms s s s

s b g x x z z s g x x z zb
f x f x f x f x

              (2.10)

1
1 2 22 41 1 12

21 2 1 1 2 1 1
1

1 2 1 2

( 1) ( , )( ) ( 1) ( , )( )( )
( ) ( ) ( ) ( )

n n n
s s s s s s s

s
s M s M s Ms s s s

s b g x x z s g x x zb
f x f x f x f x

              (2.11)

And

11 2 21 1 12
2

1 1

( 1) ( 1)( ) ( 1)
( ) ( )

n n n
s s s

s
s M s M s Ms s

s p x xs p s
f x f x

                       (2.12)

In view of (2.8), (2.9), (2.10),(2.11) and (2.12), the summation in (2.7) is bounded , we have

1 11 12 22 21 1 1 12 2
2 21 1 2 1

2 1
1 1 2 2

( 1) ( 1) ( ) ( )
( ) ( ) ( ) ( )

n n n n
n n n n s s

s s
s M s M s M s Mn n s s

n b z n b z z zb b
f x f x f x f x

1 11 12 22 241 1 1 12 2
2 22 1 1 2 2 1 1

2 1
1 2 1 2

( 1) ( , ) ( 1) ( , )( )( ) ( )
( ) ( ) ( ) ( )

n n n n
s s s s s s s

s s
s M s M s M s Ms s s s

s g x x z z s g x x zb b
f x f x f x f x

11 2 21 1 12
2 1 1

1 1 1

( 1) ( 1)( 1)( ) ( 1) ( 1)
( ) ( ) ( )

n n n
s M M M M

s s
s M s M s Ms M M

x M b z M b zs p s s q
f x f x f x

              (2.13)
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In view of (H5), (H6) and (H7), we get from (2.13) that
1

( 1) ( )
( )

n n

n

n b z
f x

as n .

Hence there exists 1M M  such that ( ) 0n nb z  for ,n M which implies ( ) , 0n nb z k k

Summing the last inequality from m  to ( 1)n , we obtain

1 1

( ) ( )
n n

s s
s m s m

b z k

That is ( )n n m mb z k n m b z

Therefore n nb z  as n . Hence there exists 2 1M M such that 0nz  for 2n M   (2.14)

Rewriting (2.7), we have

2

1
1 1 2 2 1 1 2 1 1

1 1 2 1 1 1

( 1) ( 1) ( , ) ( 1) ( 1) ( 1)
( ) ( ) ( ) ( ) ( ) ( )

n
n n s s s s s n n M M M M

s Mn s s n M M

n b z s b g x x z z n b z M b z M b z
f x f x f x f x f x f x

2 2

2

2 1 11 1
1 2 1 1 2 2 1 1 2

1 2 1 2 1

( 1) ( , )( ) ( 1) ( , ) 1( 1)
( ) ( ) ( ) ( ) ( )

M Mn n
s s s s s s s s s

s s s
s M s M s M s Ms s s s s

s b g x x z s b g x x z z ss q p x
f x f x f x f x f x

2 2

2 2

21 1 1 1
1 2 1 1 2 2 1 1 2 2 1 1

1 2 2 2 2 2 1

( 1) ( , )( ) 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

M M n n
s s s s s s s s s s s s

s s
s M s M s M s Ms s s s s s s

s b g x x z b z b z b z b z s p x
f x f x f x f x f x f x f x

   (2.15)

From (H1), (H7), (2.14) and (2.15), there exists an integer 3 2M M , such that

2

1
1 1 2 2 1 1 2

3
1 1 2

( 1) ( 1) ( , ) ,
( ) ( ) ( )

n
n n s s s s s

s Mn s s

n b z s b g x x z z l l M
f x f x f x

 where l  is a positive integer.

2

1
1 1 2 2 1 1 2

1 1 2

( 1) ( 1) ( , )
( ) ( ) ( )

n
n n s s s s s

s Mn s s

n b z s b g x x z z l
f x f x f x

   (2.16)

Let 1 1`,( 1)n nu n z (2.16) becomes

3

1
1 1 2 2 1 1 2

3
1 1 2

( 1) ( , ) ;
( ) ( ) ( )

n
n n s s s s s

s Mn s s

u b s b g x x z zl n M
f x f x f x
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(i.e)
3

1
1 2 1 2 1 2 1

1
1 1 1 2

( ) ( ) ( , )( )
( ) ( )

n
n s n s s s s

n
s Mn n s s

f x b f x g x x z uu l
b b f x f x

                                                            (2.17)

Also, Let
3

1
1 2 1 2 1 2 1

1
1 1 1 2

( ) ( ) ( , )( )
( ) ( )

n
n s n s s s s

n
s Mn n s s

f x b f x g x x z vv l
b b f x f x

                                                  (2.18)

Using lemma 1, we have, from (2.17) and (2.18)

1 1n nu v                                                                   (2.19)

(2.18)  implies
3

1
1 2 2 1 2 1

1
1 1 2

( ) ( , )( )
( ) ( )

n
n s s s s s

n
s Mn s s

f x b g x x z vv l
b f x f x

This implies that 3
1 3

1

( )
;M

n
n

lf x
v n M

b
                                                                      (2.20)

From (2.19) and (2.20), we have 3
1

1

( )
( 1) M

n
n

lf x
n z

b

3
1

1

( )
( 1)

M
n

n

lf x
z

n b
(2.21)

Summing (2.21) from 3M  to ( 1)n , we have
3

3 3

1 1

1
1

1( )
( 1)

n n

n M
s M s M n

z lf x
n b

                                                                     That is
3 3

3

1

1 1
1

1( )
( 1)

n

n M M
s M n

z z lf x
n b

3 3
3

1

1 1
1

1( )
( 1)

n

n M M
s M n

z z lf x
n b

( ) 0n n n nz x c x  For sufficiently large n ,

Which is a contradiction to the fact that nx is eventually positive. The proof is similar for the case when

nx is eventually negative. Hence the theorem is completely proved.
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Examples

Example 1

Consider the difference equation

2
2 1

3 2

9 18 5 0
1 2 ( 1)( 2) ( 1)

n
n n n

xn n nx nx x
n n n n n n

(E1)

All the conditions of Theorem 1 are satisfied. Hence every solution of equation (E1) is oscillatory.

Example 2

Consider the difference equation

3
2 1

5 3

( )1 1 0
2 1 ( 1)( 2)

n
n n n

xn nx nx x
n n n n n

(E2)

All the conditions of Theorem 1 are satisfied. Hence every solution of equation (E2) is oscillatory

Theorem 2

In addition to (H1), (H2) ,(H3)and (H4).assume that (H5), (H6), (H7) and (H8) hold and let

.n n n nz x c x  Then, every solution of (1.2) is oscillatory.

Theorem 3

In addition to (H1), (H2) and (H3).assume that (H6), (H7) and (H8) hold and let .n n n nz x c x
Then, every solution of (1.3) is oscillatory.

Theorem 4

In addition to (H1), (H2), (H3) and (H4).assume that (H6), (H7) and (H8) hold and let

.n n n nz x c x  Then, every solution of (1.4) is oscillatory.

Proofs of Theorem 2, Theorem 3 and Theorem 4 are similar to the proof of Theorem 1 and hence the
details are omitted.
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